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Abstract

Background

Novel surveillance strategies are needed to detect the rapid and continuous emergence of

infectious disease agents. Ideally, new sampling strategies should be simple to implement,

technologically uncomplicated, and applicable to areas where emergence events are known

to occur. To this end, xenosurveillance is a technique that makes use of blood collected by

hematophagous arthropods to monitor and identify vertebrate pathogens. Mosquitoes are

largely ubiquitous animals that often exist in sizable populations. As well, many domestic or

peridomestic species of mosquitoes will preferentially take blood-meals from humans, mak-

ing them a unique and largely untapped reservoir to collect human blood.

Methodology/Principal findings

We sought to take advantage of this phenomenon by systematically collecting blood-fed

mosquitoes during a field trail in Northern Liberia to determine whether pathogen sequences

from blood engorged mosquitoes accurately mirror those obtained directly from humans.

Specifically, blood was collected from humans via finger-stick and by aspirating bloodfed

mosquitoes from the inside of houses. Shotgun metagenomic sequencing of RNA and DNA

derived from these specimens was performed to detect pathogen sequences. Samples

obtained from xenosurveillance and from finger-stick blood collection produced a similar

number and quality of reads aligning to two human viruses, GB virus C and hepatitis B virus.
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Conclusions/Significance

This study represents the first systematic comparison between xenosurveillance and more

traditional sampling methodologies, while also demonstrating the viability of xenosurveil-

lance as a tool to sample human blood for circulating pathogens.

Author summary

Infectious diseases continue to be a burden on mankind, particularly in the developing

countries of the tropics. Recognition of pathogen transmission in humans is a crucial step

to thwarting epidemics of these pathogens. However, sampling human blood or tissue is

invasive and logistically difficult. Xenosurveillance takes advantage of the blood-feeding

behavior of mosquitoes to sample human blood for the presence of infectious disease

agents. In this study, we aimed to compare xenosurveillance to a more traditional sam-

pling method to assess the usefulness of this technique in field settings where it could

potentially be beneficial. DNA and RNA next generation sequencing followed by an in-

house bioinformatic pipeline identified viruses and parasites of human origin in blood

collected by either mosquitoes or finger-stick. Xenosurveillance produces samples of com-

parable quality to finger-stick blood collections while alleviating many of the difficulties of

direct human sampling. This study suggests xenosurveillance can be a complimentary

strategy for infectious disease surveillance in low-resource areas.

Introduction

Emerging and reemerging infectious diseases (EID) pose a major public health threat through-

out the world [1]. The burden of infectious disease, from persistent infections [2] to intermit-

tent outbreaks [3], is especially high in developing countries of the tropics [4]. The amount of

disability-adjusted life years (DALYs) and years of life lost (YLL) due to infectious diseases has

decreased globally in the last decade, however in areas of the tropics, particularly in sub-Saha-

ran Africa (SSA), infectious diseases still account for the majority of DALYs and YLL [5].

Despite this, the burden of infectious disease in SSA is likely underestimated due to misdiag-

noses stemming from inadequate healthcare infrastructure with limited availability of diagnos-

tic tests, procedures, and surveillance [6, 7]. These factors contribute to an environment

conducive for EIDs to go unrecognized until they have caused substantial morbidity and mor-

tality in a human population. This is highlighted by the recent outbreak of Ebola virus in West

Africa [8, 9], and demonstrates the need for an improved diagnostic and surveillance frame-

work in SSA.

Almost two-thirds of all infectious diseases of humans are of zoonotic origin [10]. Of these,

60% are EIDs [10, 11]. Pathogen emergence has been described as a step-wise process consist-

ing of three parts; pre-emergence, localized emergence, and pandemic emergence [12]. Pre-

emergence describes pathogen transmission in natural reservoir populations where some dis-

turbance results in pathogen expansion within natural populations, an increase in pathogen

host range (non-human), and/or pathogen spread to a new geographical area. Localized emer-

gence is characterized as pathogen spillover into human populations with restricted animal-

human and/or human-human transmission. Finally, pandemic emergence refers to global

spread of the pathogen through human-human transmission, or sustained transmission

through the appropriate vector [12].
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Due to the threat of pandemic emergence, global surveillance programs that are aimed, in

some capacity, at detecting zoonotic pathogens have increased in the last decade [13–18].

Active sampling of wildlife and domestic animals has identified pathogens that may be capable

of causing pandemics (i.e. pre-emergence) [19–24]. However, substantial physiological, eco-

logical, and evolutionary barriers exist to pathogen host switching, and the majority of animal

pathogens cannot become zoonotic [12, 25–28]. In order to recognize pathogens prior to pan-

demic emergence, it would be helpful to sample pathogens that are circulating in human popu-

lations at the stage of localized emergence. Active sampling of human blood and/or tissue is

the ideal strategy to detect localized emergence, however, human sample acquisition can be

invasive, costly, logistically challenging, and requires institutional review board (IRB)

approval. Consequently, developing non-invasive and cost effective strategies to collect human

samples for pathogen screening are necessary.

Mosquitoes are efficient samplers of human blood. We have previously described xenosur-

veillance, a surveillance technique that makes use of the hematophagous behavior of some

arthropods to survey vertebrates for the presence of pathogens [29, 30]. These studies demon-

strated that blood meals from Anopheles gambiae mosquitoes are sufficient samples from

which to detect viruses, bacteria, and parasites using quantitative PCR (qPCR) and reverse

transcription PCR (qRT-PCR) along with next generation sequencing (NGS) in laboratory

and field experiments.

It remains to be determined whether xenosurveillance is directly comparable to traditional

sampling techniques (e.g. finger-sticks or venous blood draws) under field conditions. Accord-

ingly, we compared xenosurveillance with blood collected via finger-stick in two villages in

northern Liberia to determine whether these methods detect the same pathogens. Pathogens

were detected by NGS in pooled xenosurveillance samples and finger-stick blood samples and

then confirmed with qPCR and qRT-PCR to make prevalence estimates in the two sample

types. Moreover, composition and count of NGS reads aligning the detected pathogens were

compared between the two methods. Our results confirm that xenosurveillance and finger-stick

methods for surveillance detect the same pathogens from a field setting in rural West Africa.

Methods

Ethics statement

Human subject sampling was approved by the Institutional Review Board at Colorado State Uni-

versity (CSU) (protocol 15-5896H) and by the National Research Ethics Board of Liberia (NREB-

0017-15) in partnership with the Liberian Institute for Biomedical Research (LIBR). A local public

health worker explained the details of the study and acquired signatures or thumb prints from

individuals providing consent. The IRB protocol allowed for thumb prints to be used as informed

consent for illiterate individuals. Informed consent was first obtained from the heads-of-house-

holds, followed by individual members of the household. Parents and guardians provided consent

on behalf of children within the household. Body temperature was collected from each consenting

individual within the household at the beginning of the study. All febrile patients (based on a

body temperature� 38˚C) were offered a SD Bioline Malaria Antigen rapid diagnostic test (Stan-

dard Diagnostics, Republic of Korea) to determine the presence of malaria parasites [31]. Patients

with a positive test were offered treatment with artemisinin-based combination therapy by a

nurse and public health worker per WHO Standards [32]. No adverse events were reported.

Study location, sampling, mosquito processing and storage

Prior to the study, researchers from CSU and LIBR traveled to northern Liberia in order to

recruit villages into the current study. Multiple villages in Lofa County, Liberia were visited
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(Fig 1). Individual households within two villages were enrolled. In an attempt to make our

sample size as large as possible, each house in each village was visited, although not every

house chose to participate. Upon enrollment, all members of the household provided blood

via finger-stick performed by a local nurse recruited into the study. The finger surface was

swabbed with an ethanol wipe prior to blood collection. Finger prick blood (hereafter referred

to as human dried bloodspots (H-DBS)) was pipetted onto CloneSaver FTA cards (GE Health-

care, USA), and immediately soaked in 25μL of RNAlater (ThermoFisher Scientific, USA) in

order to facilitate diffusion of blood into the FTA card, as well as stabilize the nucleic acid.

Body temperature was collected upon enrollment and during each sampling period, however

enrollment was not contingent upon presenting as febrile.

Following enrollment of households, villages were visited every other day for up to two

weeks to collect engorged female mosquitoes as previously described with slight modification

[29]. Mosquitoes were aspirated from inside of houses with InsectaZookas (Bioquip, USA)

prior to sunrise in order to collect mosquitoes that fed the previous night. Aspiration collec-

tions were sorted by date and location. Collections were transported to the LIBR research sta-

tion in Bolahun, Liberia, where mosquitoes were identified using morphological keys [33].

Fig 1. Households from two villages in northern Liberia were enrolled into the study. The two study villages were located in rural Lofa County, Liberia

and made up of ~30 households each. Both Village A and Village B were visited by the research team consisting of researchers from CSU and LIBR, as well

as a nurse and local public health worker. A total of 23 households from Village A and 20 households from Village B were enrolled into the study. Map

made with free online tool at https://mapchart.net/.

https://doi.org/10.1371/journal.pntd.0006348.g001
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Abdomens were dissected from blood fed mosquitoes using forceps and blood meals were

applied to FTA cards as previously described [30], with the addition of soaking blood in RNA-

later, hereafter referred to as mosquito-dried bloodspots (M-DBS). FTA cards containing both

H/M-DBS were placed in multi-barrier pouches (GE Healthcare, USA) containing desiccant

beads to reduce humidity and prevent microbial growth. Samples were kept at 4˚C until stored

on icepacks and shipped to CSU. Pouches containing H/M-DBS were stored at -80˚C until fur-

ther processing.

Library preparation for next generation sequencing

Laboratory processing of samples has been described previously [30]. Next Generation

Sequencing (NGS) was used to assess H/M-DBS samples for the presence of pathogen-derived

nucleic acid. RNA NGS was performed on H/M-DBS samples from a single household in Vil-

lage A. The remaining samples from Village A were subject to DNA NGS. RNA NGS samples

were separated into two pools by location and sample type. Total nucleic acid extraction on H/

M-DBS was performed using the Mag-Bind Viral DNA/RNA kit (Omega Bio-tek, USA) and

eluted into 50μL of water. Due to low RNA yield from H/M-DBS, samples were pooled by vol-

ume for both RNA and DNA NGS. The H-DBS pool was composed of 25μL of total RNA from

each H-DBS, whereas the M-DBS pool was composed of 10μL of total RNA from each M-DBS.

Each pool was DNAse treated using DNA-free DNA Removal Kit (Invitrogen, USA). Pools

were purified using a 2x ratio of RNA clean XP beads (Beckman Coulter, USA) and eluted into

30μL of water. In order to increase reads of potential pathogen nucleic acid, an in-house proto-

col that uses gene specific primers and RNAse H to deplete pools of rRNA was employed. Fol-

lowing rRNA depletion, double-stranded DNA (cDNA) was created from the remaining RNA.

First-strand synthesis was performed using the SuperScript III First-Strand Synthesis System

following manufactures protocol (Invitrogen, USA). 2nd strand cDNA synthesis was con-

ducted immediately following 1st strand synthesis using a Klenow Fragment (3”-5”exo-) (New

England Biolabs, USA). For DNA NGS, 10μL of total DNA for H and M-DBS were pooled by

sample type.

Library preparation inputs were quantified fluorometrically using the Qubit 3.0 High Sensi-

tivity DNA assay (ThermoFisher, USA). cDNA created from RNA NGS pools was not quanti-

fiable using a Quibit due to low concentration. Both RNA and DNA NGS samples were

subject to library preparation with Nextera XT following manufactures protocol with slight

adjustment (Illumina, USA). Due to low concentrations from RNA NGS samples, the Ampli-

con Tagment Mix was diluted 10-fold in order to tagment cDNA [34]. A dual indexing strat-

egy was used for DNA NGS pools, and single end indexing was use for RNA NGS pools.

Unique Illumina indices were incorporated to each pool using Kapa Library Amplification Kit

for Illumina (Kapa BioSystems, USA). Individual libraries were quantified using the NEBNext

Library Quant Kit for Illumina (New England Biolabs, USA). If necessary, libraries were re-

amplified using the Kapa Library Amplification Kit for Illumina in order to achieve the neces-

sary quantity for sequencing. Libraries were diluted to equal concentrations and pooled by vol-

ume for denaturing and loading. DNA NGS samples were sequenced on an Illumina MiSeq

platform using a 600 cycle (2x300 reads) MiSeq v3 reagent kit at the CSU NGS facility. RNA

NGS samples were sequenced on an Illumina NextSeq platform using a 150 cycle (1x150

reads) NextSeq Mid-Output Kit at the CSU NGS facility.

Sequencing analysis

The goal of the sequencing analysis was to search for reads and contigs aligning to human

derived pathogens. The processing pipeline is similar to that described in [35] (found online at
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https://github.com/stenglein-lab/taxonomy_pipeline). High level taxonomic assessment of

individual reads was initially performed using BLASTn- megablast tool against the nt database

with evalue = 1e-8 [36] to determine the composition of sequencing pools. An in-house script

(tally_hits.pl, available at https://github.com/stenglein-lab/stenglein_lab_scripts) was used to

count the number of reads aligning to eukaryotes, bacteria, and viruses (S1 File). Further, this

process was also used to determine the number or reads aligning to the human and An. gam-
biae genomes.

Following the taxonomic assessment pipeline, contiguous sequences (contigs) that pro-

duced quality alignments of interest were viewed in Geneious 10.2.2 [37]. Multiple contigs

aligning to pathogens were discovered. These contigs were used as to guide for further investi-

gation. This initial dataset was produced following the filtering of reads aligning to mosquito

genomic and rRNA. Human genomic DNA was removed using Bowtie2 version 2.2.5 with

parameters–sensitive-score-min C,60,0 [38] for further analysis. Reference files for GBV-C

(Accession #KM670099.1), HBV (Accession # KU736927.1) and Plasmodium falciparum
(Genebank# 256198) were downloaded from NCBI GenBank. Whole genome FASTA files for

multiple species of nematode worms, including Brugia malayi (BioProject #PRJNA10729, Dra-
cunculus medinensis (BioProject #PRJEB500), Enterobius vermicularis (BioProject #PRJEB503),

Onchocerca volvulus (BioProject #PRJEB513), Loa loa (BioProject # PRJNA60051), Wuchereria
bancrofti (BioProject #PRJNA275548), and Caenorhabditis elegans (BioProject # PRJNA13758)

were downloaded from WormBase (http://parasite.wormbase.org/index.html) and conca-

tenated into a single FASTA file. Reference FASTA files were indexed using the–build option

in Bowtie2. Following removal of mosquito genomic DNA, mosquito rRNA, and human geno-

mic DNA, paired (DNA Seq) or single (RNA Seq) end reads were aligned to indexed reference

files using–x and–very-sensitive options in Bowtie2 and exported as .SAM files using the–S

option. Aligned .SAM files were converted to .BAM files and sorted to their reference genes

using the view and sort options in SAMtools [39]. Individual reads that aligned were then

assessed visually and with the BLASTn -megablast tool under previously listed parameters.

NGS reads have been deposited in the NCBI Short Read Archive with links to BioProject

PRJNA432355. All sequencing samples have been de-identified.

PCR confirmation

In order to validate data obtained through NGS, we designed species-specific PCR primers to

1) confirm the presence of our target of interest in individual DBS, and 2) determine the preva-

lence of the detected pathogens from our samples. Primers were designed using the Primer3

software version 2.3.4 in Geneious (S1 Table) [40]. The presence of GBV-C was determined

from individual DBS using a one-step reverse transcription polymerase chain reaction

(RT-PCR) kit (Qiagen, Germany). The sequencing reaction was run on a 1% agarose gel to

visualize the amplified product. Samples that produced visible bands were sent for Sanger

sequencing using the forward primer at Quintarabio labs (USA). Chromatogram files were

then aligned to the reference genome in Geneious 10.2.2 to confirm specificity. The presence

of HBV was determined from individual DBS using the iTaq Universal One-Step RT-qPCR

Kit (Bio-Rad, USA) containing SYBR green on a real-time PCR platform. Positive samples

were sequenced and confirmation analysis was performed as stated above.

Phylogenetic analysis

Phylogenetic trees for both GBV-C and HBV were built using a neighbor-joining method with

no out group in Geneious 10.2.2. Full length genomes were downloaded from NCBI using the

nucleotide feature in Geneious 10.2.2 and aligned. NGS reads aligning to GBV-C and HBV
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were mapped to their appropriate alignment, and the longest contig from each data set, a 491

nt segment aligning to the NS5B region of GBV-C and a 542 nt segment spanning the C and P

gene of HBV, were used for the analysis. Both contigs were made of reads derived from H and

M-DBS, as the overlapping regions had> 99% nucleotide identity. These regions were

extracted from the alignments and used as the input sequences to build phylogenetic trees.

Results

Enrollment information and sample collection

Two villages in Northern Liberia were enrolled in our study (Fig 1). Village A was sampled on

6 occasions, while Village B was sampled on 3 occasions. Upon enrollment, no individuals pre-

sented as febrile. Throughout the course of sampling, two individuals presented as febrile

based on a body temperature� 38˚C. Both individuals were positive for P. falciparum infec-

tion based on the results of a SD Bioline Malaria Antigen rapid diagnostic test and were pro-

vided artemisinin-based combination therapy. Anopheles gambiae sensu lato was the most

commonly collected species of mosquito from within households in both villages, making up

over 80% of mosquitoes collected during the study (Table 1). Few other taxa of mosquitoes

were collected from inside households. Of the other taxa, Aedes and Culex mosquitoes were

the most common genera, with 9 and 3 females, respectively. The vast majority of An. gambiae
mosquitoes collected contained a full blood meal, indicating they fed the previous night. Vil-

lage A was slightly more populous than Village B, resulting in a higher number of people

enrolled into the study. As well, a greater number of blood fed An. gambiae mosquitoes were

collected from households in Village A (Table 1). Following successive collection of mosqui-

toes from Village B, substantially more H-DBS were collected than were M-DBS. Previous

experience aspirating mosquitoes from inside houses in West Africa implied this was an unex-

pectedly low number. Consequently, H/M-DBS from Village A were used for the remainder of

our study.

Sequencing analysis

RNA sequencing was performed on a subset of samples on an Illumina NextSeq instrument.

This subset was made up from samples collected from an individual household in Village A.

This location was selected because it had a higher than average number of individuals enrolled

(7) and it produced the highest number of M-DBS (34). Prior to quality control and host filter-

ing, each DBS produced over 1.8 million reads on average (S2 Table). Following quality con-

trol and host filtering, an average of ~50,000 reads remained per H-DBS and ~11,000 per

M-DBS. The greatest reduction in reads was seen after the dataset was collapsed to unique

reads, removing PCR duplicates (S2 Table).

Table 1. Summary of enrollment and sampling data.

Sample Village A Village B

Households 23 20

H-DBSa 105 80

Mosquitoes Aspirated 198 (81%)c 55 (87%)

M-DBSb 161 48

a Human Dried Bloodspot
b Mosquito Dried Bloodspot
C Number in parenthesis refers to percentage of aspirated mosquitoes that were An. gambiae and bloodfed

https://doi.org/10.1371/journal.pntd.0006348.t001
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The remaining samples were subjected to DNA sequencing on an Illumina MiSeq instru-

ment. In total, 98 H-DBS were pooled separately from the remaining 127 M-DBS. The H-DBS

pool produced over 700,000 reads while the M-DBS pool produced almost 900,000 (S2 Table).

The greatest reduction in reads from DNA sequencing samples was observed following the fil-

tering out of the human and mosquito genomic reads (S2 Table). For both RNA and DNA

sequencing, the volume of each pool sequenced was based on the number of DBS in any pool,

with the goal of obtaining similar number of reads per DBS.

Taxonomic assessment

The majority of reads from all of the sequencing pools aligned to eukaryotic organisms, and

subsequently to host nucleic acid (Fig 2, S1 File). The most common reads from H-DBS were

human derived, while the most common reads from M-DBS were derived from human and

An. gambiae, indicating the likely origin of the blood meal. While host nucleic acid made up a

preponderance of the sequencing libraries, reads of bacterial, viral, and parasitic origins were

identified. These included two human viruses, GB-virus C (GBV-C, Family Flaviviridae) and

Hepatitis B virus (HBV, Family Hepadnaviridae), P. falciparum, and multiple species of para-

sitic worms.

Individual contigs aligning to a West African strain of GBV-C were produced from both

H-DBS and M-DBS from our RNA sequencing datasets [41], indicating the virus was detected

in human and mosquito samples collected from the same household. This genome was then

used to make a reference index and individual reads from both H-DBS and M-DBS sequencing

dataset were aligned (Fig 3A). In total, 15 and 28 individual reads aligned to GBV-C from

H-DBS and M-DBS, respectively. On average, these reads aligned with over 90% pairwise

nucleotide similarity. Mean individual read length was 128 nucleotides, and these reads

spanned ~40% of the genome (Table 2). The overlapping reads/contigs from M-DBS and

H-DBS shared 99% pairwise nt identity. A phylogenetic analysis using over 50 partial GBV-C

sequences resulted in two major clades that grouped by geographic origin of virus sequences

(Fig 4, S1 Fig). The sequences identified in this study grouped most closely with GBV-C

sequences identified from humans in West Africa [41].

A single contig from our H-DBS DNA sequencing dataset produced an alignment to an

African strain of HBV. This genome was then used to make an indexed reference, and reads

from both H-DBS and M-DBS were aligned (Fig 3B). A total of 6 and 2 reads aligned from the

H-DBS and M-DBS DNA sequencing dataset, respectively. Reads from both datasets aligned

with up to 99% percent pairwise nucleotide identify and combined to cover ~25% of the

genome (Table 2). The overlapping reads/contigs from M-DBS and H-DBS shared 100% pair-

wise nt identity. The mean read length was 142 nucleotides. HBV segregates into 8 distinct

genotypes that generally can be distinguished by geographical location [42]. Viruses making

up the group Genotype E circulate in West Africa. A phylogenetic analysis using the 542 n.t.

sequence from over 150 HBV sequences correctly placed each virus in their appropriate phe-

notypic group as laid out by Kramvis et al. [42]. This analysis placed the HBV contig identified

in this study in Group E with other HBV sequences from West Africa (Fig 5, S2 Fig).

Our initial taxonomic assessment identified multiple contigs aligning to P. falciparum and

various species of parasitic nematodes in both RNA and DNA datasets. Following removal of

mosquito and human sequences, >400 reads aligned to P. falciparum and over 5,000 individ-

ual reads produced an alignment to worm genomes. The following criteria was used to remove

spurious alignments: 1) Parasite did not produce top hit in Blastn search, 2) low complexity

reads (e.g. ATAT repeats), or 3) reads aligned to conserved ribosomal RNA sequences. Follow-

ing these criteria, 426 reads produced a quality alignment to multiple genes across all
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chromosomes of the P. falciparum genome (S2 File), and no nematode parasite reads/contigs

were deemed legitimate. The vast majority of reads/contigs that were aligned to the worm

index file were removed following a Blastn search, as the top hit produced was to bacterial

sequences (S3 File).

Prevalence

Virus-specific RT-PCR and qPCR was employed to determine the prevalence of GBV-C and

HBV from individual H-DBS and M-DBS that made up the NGS pools. We determined that a

single H-DBS from one household assessed in Village A was GBV-C positive, resulting in a

prevalence of 14.3%. Out of a total of 34 M-DBS, three were deemed positive, resulting in a

prevalence of 8.8% in M-DBS collected from the same household (Table 3). A total of 7 H-DBS

from 4 separate houses were determined positive for HBV and a total of 17 M-DBS from 8 sep-

arate houses also tested positive for HBV, resulting in a prevalence of 7.1% and 13.3%, respec-

tively (Table 3). At least one positive M-DBS was collected from each house that contained at

Fig 2. The majority of reads from M-DBS and H-DBS, for both RNA and DNA NGS pools, align to host nucleic acid. The taxonomic makeup of

each sequencing pool was determined using the Blastn -Megablast tool with individual sequencing reads as input. Blue circles show taxonomic make up

at the level of kingdom for all reads in each pool. Red circles show taxonomic makeup from a subset of reads aligning to eukaryotes. While the most reads

in H-DBS aligned to human nucleic acid, reads from M-DBS aligned to both human and mosquito nucleic acid. Reads to human pathogens were

detected in both H/M-DBS in the remaining reads.

https://doi.org/10.1371/journal.pntd.0006348.g002
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least one positive H-DBS, while not all M-DBS determined positive for HBV were collected in

houses with positive H-DBS.

Discussion

While efforts to predict pathogen emergence in human populations have improved and be-

come more robust, pathogen emergence remains unpredictable [12]. This highlights the need

for vigilant infectious disease surveillance using cost effective, efficient methods for sample ac-

quisition. Hematophagous arthropods have been used to survey wildlife populations for patho-

gen circulation [43, 44], and human pathogens have been detected in blood meals of these

arthropods [29, 45–47]. Using hematophagous arthropods as a sampling method in lieu of

direct sampling techniques can be advantageous, but a comparison between the two has never

been made. Accordingly, in this study, we sought to improve on existing xenosurveillance

Fig 3. H and M-DBS showed reads aligning to human viruses at similar levels. A) RNA sequencing revealed multiple reads from pools of both H and

M-DBS spanning the GB virus C genome. B) Hepatitis B virus reads were discovered from DNA sequencing pools of both H and M-DBS. For both viruses,

reads from M-DBS were comparable in quantity and quality to reads from H-DBS.

https://doi.org/10.1371/journal.pntd.0006348.g003
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methodology while comparing this method to more traditional human blood collection

approach, finger-stick blood.

Over 40 households from two villages in northern Liberia were enrolled, resulting in a total

of 185 participants (Table 1). From these households, we aspirated a total of 253 mosquitoes,

the majority being blood fed An. gambiae. An. gambiae mosquitoes are highly anthropophilic

[48], and can often be found resting inside houses following the acquisition of a bloodmeal

[29, 49], therefore are ideal for xenosurveillance. Moreover, An. gambiae mosquitoes transmit

comparably few pathogens, specifically Plasmodium sp., Wuchereria bancrofti, and O’nyong

nyong virus. This limited number increases the likelihood that pathogen nucleic acids detected

by xenosurveillance are derived from the recently fed upon host.

Capturing blood fed mosquitoes from inside houses is less burdensome to the occupants as

compared to other direct techniques (e.g. finger-stick blood collection), and presents less of a

risk for health workers and researchers. While specialized equipment is necessary (e.g. Insecta-

zookas) and training is required for xenosurveillance, needles, sharps containers, antiseptics,

and bandages are not needed, the occupants can continue with their regular activities, and resi-

dents do not need to be present when sampling occurs. The non-invasive nature of this tech-

nique also facilitates more frequent sampling, resulting in more blood samples collected, thus

increasing the possibility of sampling pathogens that occur transiently in the blood. Addition-

ally, no specific training is required to collect and process the mosquitoes and IRB approval is

not required, as human blood is not being sampled directly. Furthermore, storing blood spots

on FTA cards with RNA Later allows for bypassing cold chain, ensures deactivation of poten-

tial pathogens in samples [50], and results in nucleic acid that is a high enough quality to

sequence.

To determine if samples collected by xenosurveillance produced data similar to samples col-

lected by finger-stick, we subjected both to NGS on Illumina platforms. A large number of

reads were produced in both our RNA and DNA NGS datasets, however, we observed a con-

siderable reduction in reads following quality control and host filtering. Greater than 99% of

reads were removed in all sequencing libraries. This is likely due to multiple factors. The RNA

NGS pools saw a greater than 90% reduction in reads following removal of PCR duplicates.

Because a very low quantity of RNA is recovered from individual DBS, a substantial amount of

amplification is required to bring libraries to a usable quantity of nucleic acid. For RNA NGS,

increasing the number of DBS per pool would reduce duplicate reads. For DNA NGS, less

amplification was required as more DNA is eluted off of individual DBS. This indicated that

Table 2. NGS reads aligning to human viruses.

RNA NGS

Sample Nucleic Acid # DBS Reads aligning to GBV-C % N.T. similarity GBV-Ca % Genome Coverageb

H-DBS Pool RNA 7 15 91.8 18.8

M- DBS Pool RNA 34 28 93.8 26.5

DNA NGS

Sample Nucleic Acid # DBS Reads aligning to HBV % N.T. similarity HBVc % Genome Coveraged

H-DBS Pool DNA 98 6 98.9 24.4

M- DBS Pool DNA 127 2 99.3 8.5

a West African strain of GB virus C (Accession #KM670099.1), N.T. (Nucleotide)

b 39.8% of total genome covered

c African strain of HBV (Accession #KU736927.1), N.T. (Nucleotide)

d 25.8% of total genome covered

https://doi.org/10.1371/journal.pntd.0006348.t002
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DNA from mosquito blood-meals was more stable on FTA cards compared to RNA, which

allowed us to pool more individual DBS per pool. Predictably, more unique reads were pro-

duced from DNA sequencing libraries than RNA sequencing libraries. Substantial losses of

reads were observed following filtering of host nucleic acid, indicating most of the sequenced

nucleic acid was derived from either humans or mosquitoes, as expected (Fig 2). These reads

are not informative for pathogen identification, however they indicate mosquito blood meals

were likely taken from humans. Although our in-house depletion strategy worked at clearing

our M-DBS RNA sequencing samples of mosquito rRNA, the remainder of the samples would

benefit from improved host depletion or pathogen nucleic acid enrichment strategies.

Fig 4. GBV-C sequences from H and M-DBS cluster phylogenetically with GBV-C strains from Sierra Leone and

Liberia. The longest contig assembled to GBV-C, a 491 n.t. segment, was used as input to create a phylogenetic tree using a

neighbor-joining method. The red line corresponds to input sequence generated from NGS data. See S1 Fig for accession

numbers corresponding to each GBV-C strain used in the analysis.

https://doi.org/10.1371/journal.pntd.0006348.g004
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Following quality control and host filtering, an adequate number of reads remained to

detect genetic signatures of viruses and parasites. Following further analysis, reads aligning to

parasitic worms proved to be largely spurious based on additional bioinformatics scrutiny.

Fig 5. HBV sequences from H and M-DBS cluster phylogenetically with HBV strains from West Africa. The longest contig assembled to HBV

was a 542 n.t. segment. This was used as input to create a phylogenetic tree using a neighbor-joining method. Letters correspond to HBV

genotype. See S2 Fig for accession numbers corresponding to each HBV used in the analysis.

https://doi.org/10.1371/journal.pntd.0006348.g005

Table 3. Prevalence of human viruses by PCR.

GBV-C HBV

H-DBS M-DBS H-DBS M-DBS

N 7 34 98 127

# Positive 1 3 7 17

Prevalence 14.3% 8.8% 7.1% 13.3%

https://doi.org/10.1371/journal.pntd.0006348.t003
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This is likely the result of bacterial sequences from our samples aligning to misassemblies in

the published genomes. The incorporation of contaminating bacterial sequences into whole

genome assemblies is not uncommon [51–53]. As well, Liberia is endemic for lymphatic filari-

asis and An. gambiae is a primary vector of W. bancrofti in West Africa, therefore any reads

aligning to this parasite in xenosurveillance samples must be from an infected host or and

infected vector [54]. Similarly, multiple reads aligning to P. falciparum were identified in all

sequencing pools, which is expected, however we cannot say with confidence from xenosur-

veillance samples whether the reads are host or vector derived. Reads aligning to P. falciparum
do highlight the fact that while xenosurveillance is intended to identify any human pathogens

present in peripheral blood, not just those transmitted by mosquitoes, these samples can also

contribute to routine vector surveillance efforts (e.g. identifying the malaria parasite in local

Anopheles mosquitoes). While we did not quantify the prevalence of P. falciparum from indi-

vidual DBS in this study, the sample collection and storage method would allow for such test-

ing. Furthermore, xenosurveillance can be conducted using other hematophagous arthropods,

although a clear understanding of the natural history of the chosen organism and their ability

to vector pathogens is crucial when conducting downstream analysis.

Reads from two viruses, GBV-C and HBV, were identified using bioinformatics and molec-

ular methods (Fig 3). Interestingly, although GBV-C, an RNA virus closely related to hepatitis

C virus, is not known to be pathogenic, infection with this virus is associated with an increased

rate of survival in patients co-infected with either HIV or Ebola virus [41, 55]. As this virus

infects and replicates in CD4-positive T cells, we would expect to be able to detect GBV-C

RNA in blood [56]. GBV-C has an estimated prevalence between 10–28% in West African

countries, which is similar to our findings, albeit derived from a small sample size (Table 3)

[41]. Both H and M-DBS, collected from the same household, produced a similar number of

reads that aligned with high confidence to GBV-C (Fig 3A) from pooled samples. HBV reads

were identified in DNA NGS pools [57]. Chronic HBV infection is the leading cause of chronic

hepatitis and hepatocellular carcinoma, and is responsible for up for up to 30% of liver cirrho-

sis cases globally [58, 59]. Prevalence is highly variable across Africa, but is estimated to be

between 4–8% in Liberia as determined by HBV surface antigen, which is congruent with our

data (Table 3) [60]. Phylogenetic analysis clearly indicates both viruses are of human origin

and from West Africa (Figs 4 and 5). Fewer reads from H and M-DBS aligned to HBV com-

pared to GBV, however substantially more DBS made up the sequencing pool (Fig 3B). As

well, the DNA NGS was performed on an Illumina MiSeq, producing substantially fewer over-

all reads than RNA NGS pools sequenced on an Illumina NextSeq (S2 Table). Nevertheless,

these results indicate that NGS can be a sensitive enough technique to detect a pathogen “sig-

nal” through host “noise” in complex pooled samples of blood collected by either method.

GBV-C and HBV nucleic acid was amplified using qRT-PCR and qPCR, respectively, from

individual DBS, showing alternative methods can be used to detect the presence of pathogens

in lieu of NGS. Due to similarity in read quality and composition collected from by each

method, our data suggest xenosurveillance is a viable alternative for collecting human blood

samples used in pathogen surveillance.

Xenosurveillance can be a useful strategy to supplement existing public health efforts in

developing regions of the world. As mosquitoes constantly take blood meals from humans,

especially in the tropics, the availability of samples is enormous. Xenosurveillance is less inva-

sive and logistically challenging compared to traditional sampling methods. Sample storage is

simple and cost effective. As well, sample quality does not appear to suffer from being collected

by a mosquito, as there are no substantial differences between samples collected via xenosur-

veillance or finger-stick. However it remains to be determined if samples collected by xenosur-

veillance are useful for other means of disease surveillance (e.g. serology). Xenosurveillance is
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capable of detecting a wide array of pathogens [30], although this study did not reliably detect

parasites and bacteria infecting humans. However, zoonotic, viral pathogens are dispropor-

tionately likely to reach pandemic emergence, as compared to parasites or bacteria [14]. Recent

pandemics of zoonotic viruses, including Ebola virus, Middle East respiratory syndrome coro-

navirus, and Zika virus support this notion [61–63]. In theory, routine xenosurveillance could

provide early warnings by detecting emerging pathogens circulating at low levels in vulnerable

populations. As well, xenosurveillance can be targeted to support epidemiological services by

collecting engorged mosquitoes in areas where suspected pathogen transmission is occurring

[64]. Species specific PCR can be used to identify known or suspected pathogens from xeno-

surveillance samples, although the use of NGS provides an unbiased detection approach. As

the cost of high throughput NGS continues to decrease, large scale sequencing projects are

becoming more universal [65]. Furthermore, as field applicable sequencing tools are being fur-

ther developed and optimized, the use of real-time NGS for surveillance and diagnosis of path-

ogens is being realized [66–69]. The combination of xenosurveillance and novel sequencing

strategies has the potential to bring active, real-time, disease surveillance to resource-poor

areas of the world.
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