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Abstract: Bluetongue virus (BTV) is an arbovirus that has been associated with dramatic epizootics in
both wild and domestic ruminants in recent decades. As a segmented, double-stranded RNA virus,
BTV can evolve via several mechanisms due to its genomic structure. However, the effect of BTV’s
alternating-host transmission cycle on the virus’s genetic diversification remains poorly understood.
Whole genome sequencing approaches offer a platform for investigating the effect of host-alternation
across all ten segments of BTV’s genome. To understand the role of alternating hosts in BTV’s genetic
diversification, a field isolate was passaged under three different conditions: (i) serial passages in
Culicoides sonorensis cells, (ii) serial passages in bovine pulmonary artery endothelial cells, or (iii)
alternating passages between insect and bovine cells. Aliquots of virus were sequenced, and single
nucleotide variants were identified. Measures of viral population genetics were used to quantify the
genetic diversification that occurred. Two consensus variants in segments 5 and 10 occurred in virus
from all three conditions. While variants arose across all passages, measures of genetic diversity
remained largely similar across cell culture conditions. Despite passage in a relaxed in vitro system,
we found that this BTV isolate exhibited genetic stability across passages and conditions. Our findings
underscore the valuable role that whole genome sequencing may play in improving understanding
of viral evolution and highlight the genetic stability of BTV.

Keywords: bluetongue virus; Orbivirus; viral evolution; viral populations; invertebrate host;
vertebrate host; selection

1. Introduction

Bluetongue virus (BTV; family Reoviridae, genus Orbivirus) is a globally distributed,
arthropod-borne virus that can cause profound disease in both domestic and wild ruminants. BTV is
the etiologic agent of bluetongue disease and is transmitted by biting midges in the genus Culicoides.
Bluetongue is listed as a notifiable disease by the World Organisation for Animal Health (OIE). Clinical
signs in infected animals may vary; some animals may not exhibit any clinical signs, while others
may develop fever, mucosal ulcerations, pneumonia, or coronitis [1,2]. Sheep and white-tailed deer
are considered to be relatively more susceptible to severe or even fatal disease compared to other
ruminants, although cattle and other wildlife species are also vulnerable to infection and illness.

The global distribution of bluetongue virus is defined by the presence of a competent insect vector,
which is—with few exceptions—necessary for virus transmission between ruminants [3,4]. In North
America, the predominant vector species is Culicoides sonorensis, although additional vectors exist in
certain locations such as Florida (i.e., C. insignis) [5–8]. Culicoides midges that become infected with
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BTV through an infective blood meal do not appear to manifest adverse effects and remain persistently
infected and capable of transmitting virus to ruminant hosts throughout their life [9].

The BTV genome is composed of ten segments of double-stranded RNA (dsRNA) which encode
12 distinct proteins that make up the viral particle and its machinery. Given its segmented, dsRNA
composition, BTV can evolve via several mechanisms, including through the occurrence of mutation
and reassortment in a viral population.

Whole genome sequencing of BTV field isolates indicates that reassortment may occur frequently
among BTV strains, and in vivo and in vitro studies have similarly shown that certain strains of BTV
can reassort readily [10–14]. However, less is known regarding the role that mutation plays in BTV’s
genetic diversification.

High rates of mutation and large viral population sizes appear to contribute to the overall ability
of many arboviruses to maintain fitness in vertebrate and invertebrate hosts, but it is not known
whether similar factors come into play for BTV during its transmission cycle [15–17]. Arboviruses
generally experience purifying selection and evolve more slowly than conventionally transmitted
viruses, reportedly due to the selective pressures exerted by transmission between highly divergent
hosts [16,18–26]. Moreover, studies of BTV and other dsRNA viruses indicate that dsRNA viruses
tend to have lower substitution rates over time, perhaps in part due to their double-stranded genome
composition [24,27].

While it is presumed that purifying selection plays an essential role in the maintenance of viral
fitness in BTV transmission, only a handful of studies have investigated BTV’s genetic evolution in
vertebrate and invertebrate hosts [20,28–30]. These studies predominantly occurred before the advent
of next-generation, whole-genome sequencing (WGS), and as a result only were able to characterize
the genetic changes occurring within one or two segments of the BTV genome, or were based upon
earlier methods to detect genetic differences, such as electropherotype [20,28–30]. It remains unclear
whether each segment experiences similar selection pressures across transmission cycles, or whether
there are differential effects across the ten genome segments. Moreover, insect and mammalian hosts
presumably exert differing selection pressures that have the potential to be amplified when alternating
transmission is eliminated.

The aim of this study, therefore, was to determine the genetic stability of BTV across its entire
genome when passaged in a relaxed in vitro system emulating BTV’s natural transmission cycle.
Although there is good evidence that at least two segments remain relatively unchanged through 2–3
alternating passages in Culicoides sonorensis and domestic ruminants, to date there has not been a robust
investigation of the effect of BTV’s alternating life cycle across all ten genome segments over multiple
generations [20]. Here, we use an in vitro system that leverages cell lines derived from two of BTV’s
natural hosts (Culicoides sonorensis and cattle) and whole genome sequencing to answer fundamental
questions regarding the population makeup and genetic diversity of this virus as it alternates between
host systems.

2. Materials and Methods

2.1. Virus Isolation

A field isolate of BTV-17 from California (GenBank, MT952971 – MT952980) was isolated from
BTV-positive whole blood during a naturally occurring infection in a clinically affected sheep and
passaged as previously described by DeMaula et al. [31].The virus was expanded once prior to initiation
of the current experiment by a single passage in BHK 21 cells and infectious titer was determined via
50% tissue culture infectious dose (TCID50) using the Reed–Muench method [32].

2.2. Cells

Bovine pulmonary artery endothelial cells (BPAEC) were maintained in Advanced MEM (Gibco,
Dublin, Ireland) supplemented with 1% non-essential amino acids, 1% penicillin-streptomycin
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(10,000 U/mL), and 10% heat-inactivated fetal bovine serum (FBS). Cells were held at 37 ◦C with 5%
CO2 supplementation and were passaged every 3–4 days when approximately 80–90% confluent.

CuVaW3 cells, derived from Culicoides sonorensis embryos, were maintained in a modified
Schneider’s Drosophila Media supplemented with 15% FBS and passaged every 3–4 days when ~90%
confluent (File S1) [33,34]. CuVaW3 cells were held at 27 ◦C without additional CO2 supplementation.

2.3. Virus Infections

BTV-17 (BTV17-INPUT) was used to infect confluent monolayers of BPAEC or CuVaW3 cells at an
MOI of 1 in duplicate under three different conditions. Virus was either passaged serially in BPAEC
(BTV17-BPAEC), serially in CuVaW3 cells (BTV17-CUVA), or alternatingly between bovine and insect
cell lines (BTV17-ALT) for 10 consecutive passages.

To establish virus infections, BTV was diluted in EMEM (for BPAEC infections) or modified
Schneider’s Drosophila Media (for CuVaW3 infections) to reach an MOI of 1 TCID50/mL. One ml of
diluted virus was then added to confluent monolayers of BPAEC or CuVaW3 cells in 25 cm2 flasks.
Additional flasks of each cell type were inoculated with EMEM or modified Schneider’s Drosophila
Media only as negative controls. After 1 h of incubation at 37 ◦C or 27 ◦C depending on cell type,
an additional 4 mL of maintenance media was added to each flask. Inoculated cultures were maintained
at 37 ◦C with 5% CO2 supplementation (BPAEC) or at 27 ◦C without additional CO2 supplementation
(CuVaW3) until harvest. After initial infection, virus was passaged blindly every ~96 h to avoid
freeze–thaw cycles.

Virus was harvested from each passage when bovine cells showed >80 % cytopathic effect (CPE).
Insect cells did not demonstrate CPE, but the presence of BTV was confirmed with RT-PCR at each
passage. Virus collected from each passage was used to initiate each subsequent round of infection,
and remaining stocks were stored immediately at −80 ◦C for downstream applications. At each
passage, the same volume of virus supernatant from each respective lineage was used to initiate the
subsequent round of infection. In this way, we attempted to maintain an equal MOI in each condition,
while avoiding free–thaw cycles.

2.4. RT-PCR

Nucleic acid from viral supernatant collected at each passage was extracted using a MagMAX
Pathogen RNA/DNA kit (Applied Biosystems, Foster City, CA, USA) according to the manufacturer’s
instructions for low cell content samples. Extracted samples were prepared for RT-PCR using a
universal one-tube fluorogenic probe-based reaction that detects BTV segment 10 as described by
Hoffman et al. and modified as outlined by Ortega et al. [35,36]. Reactions were prepared using a
SuperScriptTM III One-step RT-PCR kit (Invitrogen, Carlsbad, CA, USA) at half-reaction volumes and
were thermocycled as previously described [35].

2.5. WGS Library Preparation

Input virus (BTV17-INPUT) and duplicates from each condition (BTV17-CUVA, BTV17-ALT,
and BTV17-BPAEC) collected after passages 1, 3, 6, 9, and 10 were prepared for whole genome
sequencing (WGS). Extracted samples were treated with 4 U of DNase (TURBO DNA-freeTM kit,
Invitrogen) according to manufacturer’s instructions. DNased nucleic acids were then incubated with
LiCl (final concentration 2.0 M) for 14–18 h at 4 ◦C to selectively precipitate single stranded RNA and
maximize dsRNA yield. Following incubation, samples were centrifuged at 4 ◦C × 20 min at 18,000× g.
Supernatant was collected and excess salts were removed via a 1.25×MagMAX Pathogen RNA/DNA
kit clean-up step.

Libraries for each sample were then prepared for whole genome metagenomic sequencing
using a ScriptSeq v2 RNA-Seq library preparation kit (Epicentre, Madison, WI, USA) according
to the manufacturer’s instructions, except RNA fragmentation time was reduced to 2 min 30 s at
85 ◦C. Adapters containing unique 6-mer barcodes (ScriptSeq Index PCR Primers, Epicentre) were
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annealed to each sample. Libraries were cleaned using a 1x Agencourt AMPure XP (Beckman Coulter,
Brea, CA, USA) magnetic bead-based clean-up, and concentration and quality of each library was
measured using Agilent’s High Sensitivity D1000 ScreenTape assay on the TapeStation 2200 instrument
(Agilent, Santa Clara, CA, USA). Samples were pooled to achieve roughly equal concentrations prior
to size-selection. Pooled, indexed products between 300–700 base pairs (bp) in length were manually
selected by fractionating the pooled library on a 1% agarose gel, followed by excising the desired region
and performing gel extraction according to kit instructions (QIAquick Gel Extraction Kit, Qiagen,
Hilden, Germany). Concentration, quality, and size-distribution of pooled, size-selected libraries
were then once again determined via High Sensitivity D1000 ScreenTape. Library concentration was
quantified using the KAPA Library Quantification qPCR kit (KAPA Biosystems, Basel, Switzerland)
according to manufacturer’s instructions.

Four initial samples were sequenced on the Illumina MiSeq instrument using 300 cycle (2 × 150)
MiSeq v2 reagents (Illumina Inc., San Diego, CA, USA). Subsequently, batches of 15–16 samples were
sequenced on the Illumina NextSeq mid-output 300 cycle (2 × 150) v2 reagents (Illumina Inc.) to
achieve sufficient sequencing depth across all ten segments.

2.6. Bioinformatics

Libraries were demultiplexed and reads from each sample were quality-filtered via a pre-processing
bioinformatics pipeline that uses trimmomatic to remove bases and sequences with low quality scores,
as well as adapter sequences [37]. Trimmed reads were then processed using Cd-hit to eliminate
duplicate reads (those where two or more reads had ≥ 96% pairwise identity in the first and last
30 base pairs) [38]. Reads were then aligned to the consensus sequence of the parental input virus
(BTV17-INPUT) in Bowtie2 using default parameters [39]. Finalized sequences were examined in
Geneious v.10.2.2 to confirm alignment accuracy.

Quality-filtered reads in BAM format from BTV17-INPUT and virus replicates from passages
3, 6, and 9 were analyzed for single nucleotide variants (SNVs) and insertions–deletions (indels)
using LoFreq [40]. Indel qualities were added to BAM data using a –lofreq indelqual with �dindel

option. Default LoFreq parameters, which include stringent thresholds based on alignment quality,
base quality, and mapping quality, were used for SNV and indel detection. Only LoFreq-detected
variants in the coding sequence of each segment were included in downstream analyses.

Variants with significant strand-bias were pre-filtered based on LoFreq default parameters. Output
.vcf files were imported into Geneious v.10.2.2 and visually inspected along with alignments.

2.7. Population Genetics

Viral population diversity was assessed in several ways. Genetic distance was determined for
each sample by summing coding sequence SNV frequencies for each segment [41]. Richness was also
measured using viral population-specific modifications: the number of SNV sites detected within
the coding sequence of each of the ten genome segments was tabulated for each sample, and then
normalized by the total number of BTV reads aligning per segment [41,42]. Richness was calculated as
the number of unique SNV sites (i.e., unique nucleotide positions where one or more alternate alleles
may be present) present per 10,000 BTV reads.

Shannon entropy across samples and segments was calculated as a measure of population
complexity to better characterize the genetic makeup of the viral milieu generated in each condition.
The following equation, based on previously published work, was used:

Si,s = −ps(ln ps) + (1− ps) × ln(1− ps)

where the within-host viral population’s Shannon entropy (Si,s) is estimated as the mean S across all
nucleotide positions (s) using the SNV frequency (p) at each nucleotide position [41]. Mean Shannon
entropy across all sites was determined for each segment and/or sample.
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Changes in the fixation index (FST) between the input virus and along the lineage of each replicate
were calculated as a measure of genetic divergence across conditions and passages. FST was estimated
by the method-of-moments technique as described by Reynolds and refined for WGS datasets by
Fumagalli et al. [43,44]. As has been performed for other viral deep sequencing datasets, the number
of individuals sampled in each population (n), was set to the mean BTV coverage depth for each
segment’s coding sequence (segment 1: 1604; segment 2: 2423; segment 3: 1375; segment 4: 1726;
segment 5: 3014; segment 6: 3217; segment 7: 1866; segment 8: 5332; segment 9: 5282; segment 10:
2664) [41]. The frequencies of non-reference variants (those that differed from the consensus sequence)
were estimated as pi, s, p j,s and ps, for populations i, j, and i+j, respectively, at site s. All other sites
where non-reference variants were not detected were set to p = 0. Genetic variance at a single site, s,
was then calculated based on the following equations:

as =

(
4ni(pi,s − ps)

2 + 4n j
(
p j,s − ps

)2
− bs

)
2(2nin j/

(
ni + n j

)
and

bs =

(
niαi,s + n jα j,s

)(
ni + n j − 1

)
where

αi,s = 2pi,s(1− pi,s), and α j,s = 2p j,s
(
1− p j,s

)
FST at a single site s was then estimated as as

(as + bs)
, and cumulatively across a coding sequence

locus (m sites) as
∑m

s=1 a∑m
s=1(a+b) . FST between input and passaged viruses and along lineages of each replicate

was calculated for each segment. FST between two populations may range from 0 to 1, with an FST
of 1 representing highly divergent populations. This measure was applied to understand how viral
populations shifted from BTV17-INPUT (passage 0) to passage 3, and then within each replicate,
how populations diverged from passages 3 to 6 and 6 to 9.

To estimate degree of selection, dN/dS was calculated for each sample. Total nonsynonymous
(Ns) and synonymous (Ss) sites for the coding region of each segment across passages 3, 6, and 9 were
determined using DnaSP 6 via the Nei–Gojobori method [45,46]. Based on recommendations for viral
data, nonsynonymous substitutions (Nd) and synonymous substitutions (Sd) were calculated as the
sum of nonsynonymous and synonymous substitution frequencies, respectively [41,47]. The dN/dS
ratio was then calculated based on the Jukes–Cantor formula [48]:

dS =
−3 × ln(1− ((4Sd/Ss)/3))

4

and

dN =
−3 × ln(1− ((4Nd/Ns)/3))

4
A dN/dS ratio > 1 suggests positive selection, while a dN/dS ratio of <1 indicates negative selection.

While dN/dS provides an estimate of selection, it is considered a relatively insensitive measure for
intra-host virus populations, and is therefore only interpreted as a guide towards general trends in this
dataset [49].

2.8. Statistics

Statistical analyses were carried out using GraphPad Prism 8.1.0. Unless otherwise noted, two-way
repeated measures ANOVA with Tukey’s post-hoc test was used to analyze the effect of condition
(CuVaW3, BPAEC, or alternating propagation) and genome segment on measures of viral population
genetics, with a p < 0.05 considered significant.
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3. Results

3.1. Whole Genome Sequencing and Detection of Single Nucleotide Consensus Changes

Molecular techniques were used to assess the impact of alternating host transmission on BTV’s
genetic diversification over time (Figure 1). RT-PCR was used as an estimate of viral replication.
Ct values remained consistently low across conditions and passages (mean: 14.6; standard deviation
(SD): 0.7; range: 13.4–16). We attempted to determine infectious titer of passaged viruses using TCID50
assays on BHK21 cells, but the cytopathic effect was not reliably detectable even at the lowest dilutions
(10−1) in our standard 96 h assay. We suspect that samples may have been compromised during storage,
or that BTV passaged serially on BPAEC or CuVaW3 cells may have diminished growth kinetics in
BHK 21 cells, thereby compromising our ability to accurately titer this virus using our standard assay
parameters. As a result, we used BTV Ct values as a measure of viral replication across passages.

Viruses 2020, 12, x FOR PEER REVIEW 6 of 16 

 

values remained consistently low across conditions and passages (mean: 14.6; standard deviation 

(SD): 0.7; range: 13.4–16). We attempted to determine infectious titer of passaged viruses using 

TCID50 assays on BHK21 cells, but the cytopathic effect was not reliably detectable even at the lowest 

dilutions (10−1) in our standard 96 h assay. We suspect that samples may have been compromised 

during storage, or that BTV passaged serially on BPAEC or CuVaW3 cells may have diminished 

growth kinetics in BHK 21 cells, thereby compromising our ability to accurately titer this virus using 

our standard assay parameters. As a result, we used BTV Ct values as a measure of viral replication 

across passages. 

 

Figure 1. Experimental Set-up. A field isolate of bluetongue virus (BTV)-17 (BTV17-INPUT) was 

passaged under three different cell culture conditions: serial passages in bovine cells (BTV17-BPAEC); 

serial passages in Culicoides sonorensis cells (BTV17-CUVA); and alternating passages in bovine and 

C. sonorensis cells (BTV17-ALT) for 10 consecutive passages. 

Whole genome sequencing was coupled with variant detection to establish single nucleotide 

variant (SNV) frequencies for the input (BTV17-INPUT) and passaged viruses. Depth of BTV 

coverage across the coding sequences of all samples and segments varied (Table S1), with a mean 

depth of 3529 (SD: 2066). Only coding sequence SNVs above 0.2% frequency and without significant 

strand bias (as identified by LoFreq default parameters) and depth > 100 reads were included in 

analyses. The mean depth at positions with variants across all samples was 3084 (SD: 2541). 

While the occurrence of SNVs varied across samples, the consensus sequence of BTV17-INPUT 

shared 100% nucleotide identity with output viruses across all conditions in segments 1, 2, 3, 4, 6, 7, 

8, and 9, and >99.8% nucleotide identity in segments 5 and 10. Consensus sequences for BTV17-

CUVA, BTV17-ALT, and BTV17-BPAEC were identical across all ten segments at each time point 

(passages 1, 3, 6, 9, and 10). 

Single nucleotide consensus changes (i.e., variants with >50% frequency) arose and approached 

fixation in segments 5 (nonsynonymous, residue 229I → R) and 10 (synonymous, nucleotide 360A → 

G) after a single passage in CuVaW3 cells or BPAEC cells. These changes were conserved across 

remaining passages in all three cell culture conditions (segment 5 229I → R frequency: 99.35–99.96%, 

and segment 10 360A → G frequency: 97.39–99.89% across all samples). No further consensus changes 

occurred with additional passages. 

Resequencing of an additional aliquot of the original BTV17-INPUT virus confirmed that neither 

variant was present as the consensus nucleotide in the input virus. The segment 5 229I → R variant 

was detected in 0 of 685 reads at that site in the initially sequenced input virus, and in only 1 of 1175 

reads at that site (0.05% frequency) in the subsequent aliquot. In contrast, the segment 10 360A → G 

variant was detected at approximately 20% frequency in both aliquots of the input virus. 

3.2. Measures of Genetic Diversity across Passages and Cell Types 

Whole genome sequencing data were analyzed for low frequency variants and insertions–

deletions (indels) and various measures of genetic diversity, were assessed to better understand 

Figure 1. Experimental Set-up. A field isolate of bluetongue virus (BTV)-17 (BTV17-INPUT) was
passaged under three different cell culture conditions: serial passages in bovine cells (BTV17-BPAEC);
serial passages in Culicoides sonorensis cells (BTV17-CUVA); and alternating passages in bovine and C.
sonorensis cells (BTV17-ALT) for 10 consecutive passages.

Whole genome sequencing was coupled with variant detection to establish single nucleotide
variant (SNV) frequencies for the input (BTV17-INPUT) and passaged viruses. Depth of BTV coverage
across the coding sequences of all samples and segments varied (Table S1), with a mean depth of
3529 (SD: 2066). Only coding sequence SNVs above 0.2% frequency and without significant strand
bias (as identified by LoFreq default parameters) and depth > 100 reads were included in analyses.
The mean depth at positions with variants across all samples was 3084 (SD: 2541).

While the occurrence of SNVs varied across samples, the consensus sequence of BTV17-INPUT
shared 100% nucleotide identity with output viruses across all conditions in segments 1, 2, 3, 4, 6, 7, 8,
and 9, and >99.8% nucleotide identity in segments 5 and 10. Consensus sequences for BTV17-CUVA,
BTV17-ALT, and BTV17-BPAEC were identical across all ten segments at each time point (passages 1, 3,
6, 9, and 10).

Single nucleotide consensus changes (i.e., variants with >50% frequency) arose and approached
fixation in segments 5 (nonsynonymous, residue 229I→ R) and 10 (synonymous, nucleotide 360A
→ G) after a single passage in CuVaW3 cells or BPAEC cells. These changes were conserved across
remaining passages in all three cell culture conditions (segment 5 229I→ R frequency: 99.35–99.96%,
and segment 10 360A→ G frequency: 97.39–99.89% across all samples). No further consensus changes
occurred with additional passages.

Resequencing of an additional aliquot of the original BTV17-INPUT virus confirmed that neither
variant was present as the consensus nucleotide in the input virus. The segment 5 229I→ R variant was
detected in 0 of 685 reads at that site in the initially sequenced input virus, and in only 1 of 1175 reads
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at that site (0.05% frequency) in the subsequent aliquot. In contrast, the segment 10 360A→ G variant
was detected at approximately 20% frequency in both aliquots of the input virus.

3.2. Measures of Genetic Diversity across Passages and Cell Types

Whole genome sequencing data were analyzed for low frequency variants and insertions–deletions
(indels) and various measures of genetic diversity, were assessed to better understand genetic variation
in a relaxed, in vitro model of BTV transmission. Genetic distance was approximated as the sum of
all SNV frequencies per coding sequence. BTV17-CUVA, BTV17-ALT, and BTV17-BPAEC exhibited
similar genetic distances. Consistent with the consensus mutations that occurred in passaged viruses,
BTV17-CUVA, BTV17-ALT, and BTV17-BPAEC demonstrated nearly two-fold greater genetic distance
compared to BTV17-INPUT in segments 5 and 10 (Figure 2). When assessed for trends during the
progression of passages, viruses exhibited similar genetic distances across all 10 segments regardless of
cell culture condition (Figure S1).
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Figure 2. BTV Genetic Distance by Segment across Cell Culture Conditions. Genetic distances (the sum
of single nucleotide variant (SNV) frequencies per segment) were normalized by each segments’ coding
sequence length. Segments 1–10 are represented along the x-axis (s1, s2, s3, s4, s5, s6, s7, s8, s9, and s10).
For BTV17-CUVA, -ALT, and -BPAEC, mean distance (and standard deviation) for each segment across
passages 3, 6, and 9 is shown.

There was relatively wide variation in richness across samples and segments (Figure 3). When
analyzed across all three cell culture conditions (BTV17-CUVA, -ALT, and -BPAEC), overall richness was
significantly lower in segments 8 and 9 than in the other eight segments (p < 0.0001). Segments 1 and 3
demonstrated the highest overall richness (p < 0.05). Interestingly, richness across the entire coding
sequence of BTV17-INPUT was greater than that detected in any of the subsequent passages, regardless
of cell culture condition (p < 0.0005) (Figure 3a). BTV17-CUVA, BTV17-ALT, and BTV17-BPAEC
demonstrated substantial variability in richness within each segment across passages (Figure S2).
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was calculated as the sum of single nucleotide variants (SNV) sites normalized by the number of
BTV reads (i.e., variant sites per 10,000 BTV reads), and collective data across all segments are
shown by box-and-whisker plots (median, interquartile range, and minimum/maximum are depicted;
*** = p < 0.005). Box-and-whisker plots for BTV17-CUVA, -ALT, and -BPAEC were constructed using
the richness of all segments across passages 3, 6, and 9. (b) Mean richness and standard deviation for
each segment are shown. Segments 1–10 are represented along the x-axis (s1, s2, s3, s4, s5, s6, s7, s8, s9,
and s10). Bars depicting BTV17-CUVA, -ALT, and -BPAEC represent collective data from passages 3, 6,
and 9.

We then measured population complexity using Shannon entropy as an estimator of uncertainty
within a viral population. Cumulatively across passages, BTV17-ALT was the least complex viral
population, with significantly lower Shannon entropy than BTV17-INPUT, BTV17-CUVA, and
BTV17-BPAEC (p < 0.005) (Figure 4). When analyzed for segment-specific trends, segment 10
demonstrated the greatest Shannon entropy across all conditions (p < 0.05) (Figure 5). Segment-specific
trends were not detected between cell culture conditions across passages (Figure S3).
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Figure 4. BTV Genetic Complexity across Cell Culture Conditions. Shannon entropy was calculated as
a measure of population complexity across viral coding sequences. Shannon entropy was calculated
for each segment and cumulative data from all segments are shown by box-and-whisker plots (median,
interquartile range, and minimum/maximum are depicted; *** = p < 0.005). Box-and-whisker plots for
BTV17-CUVA, -ALT, and -BPAEC were constructed using the mean Shannon entropy of all segments
across passages 3, 6, and 9.
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Figure 5. BTV Genetic Complexity by Segment across Cell Culture Conditions. Shannon entropy was
calculated for each segment as a measure of viral population complexity. Segments 1–10 are represented
along the x-axis (s1, s2, s3, s4, s5, s6, s7, s8, s9, and s10). For BTV17-CUVA, -ALT, and -BPAEC, mean
Shannon entropy (and standard deviation) for each segment across passages 3, 6, and 9 are shown.

Novel SNVs and indels arose in each condition and passage, although the number of new variants
varied across samples (Figure 6). The occurrence of novel indels—which are presumed to be universally
deleterious when associated with shifts in reading frame—was approximately ten-fold less than the
occurrence of novel SNVs. Several novel variants and indels re-occurred across samples or passages,
disappearing in one passage and then reoccurring later (data available upon request). This may reflect
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a predisposition for variants or indels to occur repeatedly in certain parts of the genome, or it may
indicate subtle variations in sequencing quality that resulted in failure to detect these low-level variants
in certain samples.
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Figure 6. SNVs and Indels by Passage and Cell Culture Condition. The total number of novel SNVs or
indels was calculated for each sample and normalized by the nucleotide length of the coding sequence
(CDS) of each segment. The mean number of normalized novel sites per segment is plotted according
to passage and cell culture condition. Segments 1–10 are represented in each bar graph (s1, s2, s3, s4, s5,
s6, a7, s8, s9, s10). Viruses harvested from each condition at passage 3 (CuVa p3, Alternate (Alt) p3,
and BPAEC p3), passage 6 (CuVa p6, Alt p6, BPAEC p6) and passage 9 (CuVa p9, Alt p9, BPAEC p9)
are depicted.

3.3. Measures of Genetic Divergence across Passages and Cell Types

Genetic divergence was estimated by calculation of the fixation index (FST) to understand how
viral populations shifted across passages. Marked divergence from BTV17-INPUT was detected
in segments 5 and 10 across all samples (segment 5 mean FST = 0.67 (range 0.64–0.70); segment
10 mean FST = 0.73 (range 0.70–0.74)), consistent with consensus changes that arose in these segments.
Segments 1 and 2 also demonstrated modest divergence from BTV17-INPUT (mean FST 0.12 and 0.24,
respectively) across all samples by passage 3. The remaining segments had very low FST values from
BTV17-INPUT (passage 0) to passage 3 viruses, with segments 6, 8, and 9 demonstrating the lowest
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divergence from the input virus across all three conditions. Subsequent to initial passages, when most
marked divergence was detected, FST values exhibited relatively consistent rates of divergence between
passages 3 and 6, and passages 6 and 9. FST values were similar among cell culture conditions and
segments, and while BTV17-ALT showed slightly higher FST values than matched BTV17-CUVA and
BTV17-BPAEC samples across all segments, this trend was non-significant.

3.4. Measures of Selection across Passages and Cell Types

The proportion of nonsynonymous sites across the entire BTV coding sequence (pN) for
BTV17-INPUT was 0.77, and this measure remained relatively unchanged across segments and
samples for subsequent passages. Propagation on BHK cells (BTV17-INPUT) appeared to result in
purifying selection for most segments (mean dN/dS = 0.35) (Figure 7a), although segments 3 and 7
had dN/dS ratios closer to 1 (0.97 and 1.03, respectively), indicating more neutral selection (Figure 7b).
In contrast, after passage in CuVaW3 and BPAEC cells, segments 4 and 5 generally exhibited positive
selection (mean dN/dS across all conditions: 1.13, range 0.60–1.71; and 1.07, range 0.61–1.58, respectively)
(Figure 7b). When assessed across the coding sequence of all ten segments, BTV demonstrated negative,
or purifying selection, in all conditions and passages. However, purifying selection appeared to be
relatively stronger in BTV17-INPUT (p < 0.0005, propagated in BHK cells) compared to BTV propagated
in BPAEC and CuVaW3 cells. When individual segments were analyzed across passages, dN/dS was
varied from passage to passage, and between cell culture conditions (Figure S4).
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 Figure 7. Genetic Selection by Segment and Cell Culture Condition. The proportion of nonsynonymous
(dN) to synonymous (dS) changes was used as an estimate of selection. (a) dN/dS for each sample was
calculated across the entire BTV coding sequence (CDS; inclusive of all ten segments), *** = p < 0.0005.
(b) dN/dS from all passages and replicates are shown. Error bars depict mean and standard deviation
of each segment according to cell culture condition. BTV17-INPUT is shown by black dots and the
dashed line. Segments 1–10 are represented along the x-axis (s1, s2, s3, s4, s5, s6, s7, s8, s9, and s10).
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4. Discussion

By using a relaxed system of propagation, we sought to remove the impact of varying host-derived
features (i.e., adaptive immunity, overall health status, species variation) on BTV’s genetic diversification,
instead capturing the virus’s inherent capacity to diversify in vertebrate and invertebrate cells.

Several studies have demonstrated that arboviruses diversify to a greater extent in the insect host,
possibly due to certain invertebrate immune response mechanisms (RNA interference, RNAi) [16,50,51].
While there is evidence for the existence of RNAi in Culicoides and Culicoides-derived cell lines,
the presence of RNAi in the cell line used in our study (CuVaW3) has yet to be demonstrated [52,53].

Contrary to our expectation of increased genetic variation in virus passaged solely in CuVaW3
cells, we found that the number of single nucleotide variants (SNVs) detected at each passage was
quite variable. While the consistent detection of SNVs across all conditions likely indicates the
presence of population heterogeneity and possible viral quasispecies, overall measures of BTV-17
population diversity remained largely constant regardless of cell type. In contrast, Caporale et al. and
Lean et al. found that bluetongue virus passaged in a different Culicoides-derived cell line (KC cells)
had relatively greater numbers of variants than that of virus passaged in mammalian cells [54,55].
However, our approach with BPAEC cells—a cell and host type that BTV demonstrates a natural
tropism for—distinguishes our findings with mammalian cells from those previous studies where
embryonated chicken eggs, BSR cells, Vero cells, and CPT-tert cells were used.

Despite passaging BTV-17 in a relaxed model with relatively few constraints on genetic
diversification, we found that this virus exhibited marked genetic consistency between passages.
Genetic diversity among BTV field isolates most likely reflects numerous factors, including host immune
response, vaccination status, host species, infectious titer, possible co-infecting viruses, and bottlenecks
that may occur during transmission. While our inability to capture these factors is a limitation of the
present work, the underwhelming degree of genetic diversity detected in our study is corroborated by
studies demonstrating that the electropherotype of BTV does not change across prolonged infection in
ruminant hosts and that experimental in vivo transmission between C. sonorensis and sheep and cattle
results in minimal changes in the overall genetics of BTV [20,29,30].

Divergence of passaged viruses from the input strain likely indicates that BHK 21 cells exert
different selection pressures than BPAEC or CuVaW3 cells. The disproportionately high genetic
richness of BTV17-INPUT coupled with unremarkable genetic distance across all segments indicates
that most SNVs in BTV17-INPUT are low-frequency. In addition, BTV17-INPUT demonstrated the
lowest dN/dS ratio of our samples, indicating relatively dramatic negative selection. These findings
may demonstrate that strong purifying selection in BHK cells is coupled with increased frequency of
neutral—or even deleterious—alleles that are not purged from the population [56]. This phenomenon,
described by Cvijovic et al. using a forward-time model, can result in distortions of genetic measures
that mimic population expansion [57]. Alternatively, interferon-deficient BHK 21 cells may promote
“tolerance” of viral variants, causing a similar net outcome in our various diversity measures [57,58].

Consistent with the work of Bonneau et al., who found that segment 10 frequently developed
nonsynonymous mutations during transmission from Culicoides to ruminants, we detected high
complexity (Shannon entropy) and divergence (FST) for segment 10, regardless of cell culture condition.
This suggests that increased population heterogeneity may be a characteristic feature of BTV’s segment
10. While this segment is generally considered to be one of the more conserved BTV segments,
some groups have identified relatively high substitution rates for segment 10 [24,59,60]. While
underlying mechanisms for this trend are unclear, segment 10 plays an essential role in recruiting
RNA segments during viral replication and generation of the cytopathic effect, and thus the low-level
genetic heterogeneity detected here and in other studies may be explained by its functional role in
virus replication. Alternatively, there may be secondary structures that affect sequencing chemistry
and falsely increase the number of variants detected.

Our work corroborates findings by Caporale et al. and Lean et al., who described a decrease in
variants in BTV isolated from whole blood, particularly when passaged in BHK 21 cells [54,55]. It is
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likely that isolating BTV on this non-native cell type causes a population bottleneck and purifying
selection. We suspect that the consensus changes that arose in segments 5 and 10 when BTV-17 was
transitioned from BHK 21 cells to bovine or Culicoides cells may reflect a reversion from BHK-specific
adaptations in these segments. While segment 5 and 10 RNAs are known to interact, these interactions
occur at different sites than those detected in our work [61]. However, currently uncharacterized
RNA–RNA, RNA–protein, and protein–protein interactions in BTV assembly and maturation may exist.

A caveat to this work and all deep-sequencing projects is that variant detection is not free
of bias. LoFreq default parameters include stringent quality filters that reduce the incidence of
false-positives [40]. However, studies have demonstrated that false positives are relatively common
regardless of sequencing platform and variant caller used, and that sensitivity often varies between
variant-calling programs [62]. By performing our work in duplicate and eliminating any PCR
unnecessary amplification steps, we have tried to reduce as many variables as possible. However,
sequencing chemistry, structural features of DNA–DNA interactions, and inherent sequencing errors
may all contribute to uncertainty in our data.

In summary, few studies have utilized a comprehensive approach to evaluate contributions of
viral genetic diversity and how the existence of multiple genotypes within alternate host passages may
influence BTV evolution. Improved understanding of BTV genetic variability during host alternation is
critical for predicting the emergence and impact of Culicoides-transmitted viruses in different ecosystem
contexts with disease transmission models. Additional infection studies in vertebrate and invertebrate
hosts, coupled with deep viral sequencing, are warranted to better understand these findings.
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Selection across Passages and Segments by Cell Culture Condition, Table S1: Depth of Sequencing Coverage
across Samples.
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